
Overview
Control of the Chronos camera is provided as a REST API, which is a type of web API, involving requests and responses, not too unlike

visiting a web page. You make a request to a resource stored stored on a server, and the server responds with the requested

information. The protocol used to transport the data is HTTP. "REST" stands for Representational State Transfer.

The Chronos API provides access to the camera configuration, settings and related data describing the camera's hardware and

available features. The base address of the Chronos API is http://192.168.12.1/control when accessing the camera via its USB

interface. This API provides a set of endpoints, each with its own unique path.

Methods
API methods are procedures that may start a procedure, or change the camera state. Since these operations do not fit well into the

REST model, they are performed using the HTTP POST method, with their arguments provided in JSON format as the HTTP POST

body.

describe
The describe method is accessible by the /control/describe endpoint, and returns a description of the available parameters and

methods that can be accessed via the Chronos API. This method is used to generate most of the reference information on this page.

user@example.com:~$ curl http://192.168.12.1/control/describe

{

"cameraMemoryGB": {

"type": "d",

"get": true,

"set": false,

"notifies": false,

"doc": "int: Amount of video memory attached to the FPGA in GiB"

}

...

}

Member Description

type D-Bus type signature for the parameter's value.

get true when the parameter can be retrieved using the get method

set true when the parameter can be changed using the set method

notifies true when changes to the parameter are reported using the notify event

doc User documentation string, explaining the parameter's meaning and function

Chronos API Documentation 1 of 32

availableCalls
The availableCalls method is accessible by the /control/availableCalls endpoint.This method gets a list of the methds that can

be called via the API.

This method returns a dictionary with an entry for each method that can be called via the API. Each entry will include a brief string that

summarizes the purpose of the API method. Optionally, the entries may also contain a description with a more extensive detail, as

well as args and returns dictionaries that list the parameters that the method accepts, and any values that the method returns.

The availableCalls method returns a dictionary with the following members:

Return Value Type Description

calls dict A dictionary describing each method that is callable by the API.

availableKeys
The availableKeys method is accessible by the /control/availableKeys endpoint.This method gets a list of the parameters available

in the API.

This method returns a dictionary with an entry for each parameter that can be accessed via the API. Each entry will describe the type of

the parameter as a D-Bus signature, a doc string that describes the function of the parameter, as well get, set, and notify flags that

indicate whether the parameter can is read-only, read-write or generates notify events when its value changes.

The dictionary for each key may also include additional details depending on the type of the parameter. String parameters describing an

enumerated type, may include an enum dictionary which maps each of the acceptable values to a brief docstring describing what that

value does.

Dictionary types may include an args dictionary describing the each member of the dictionary does when it is set in the API, or they

may include a returns dictionary describing what each dictionary member means when it is returned by the API.

Each key may also include a description member, which provides a detailed multi-line documentation string. This is intended to

provide more detail than may be available in the single-line doc.

The availableKeys method returns a dictionary with the following members:

Return Value Type Description

keys dict A dictionary describing each parameter in the API.

clearCalibration
The clearCalibration method is accessible by the /control/clearCalibration endpoint.This method removes user calibration data,

returning the camera to its factory state.

When called with no arguments, this removes only the user calibration, allowing the camera to return to its factory new state. The caller

may also specify the removal of factory calibration data, though this is not recommended unless the user has made a backup of their

calibration data first.

The clearCalibration method accepts the following arguments:

Chronos API Documentation 2 of 32

Argument Type Description

factory bool, optional Also remove factory calibration data. (default: false)

exportCalData
The exportCalData method is accessible by the /control/exportCalData endpoint.This method generates factory calibration samples

and saves them to external storage

This method iterates through the image sensor's internal calibration modes and generates factory calibration sample data to be

processed externally. The calibration data will be saved to a USB thumb drive, typically mounted at /media/sda1.

After external processing of the calibration samples is complete, the resulting calibration data can be imported to the camera using the

importCalData method.

flushRecording
The flushRecording method is accessible by the /control/flushRecording endpoint.This method flushes recoreded video data from

memory.

Normally when recording video, the camera will overwrite video data only as needed to make room for new data from the the image

sensor. This method discards all video data from the video memory so that the user can start fresh on their next recording.

get
The get method is accessible by the /control/get endpoint.This method retrieves parameter values from the API.

The resulting dictionary will contain an element for each parameter that was successfully read from the API. If any parameters could not

be read, they will be included in an error dictionary giving the reasons that they could not be retrieved.

The get method accepts the following arguments:

Argument Type Description

*names string list of parameter names to rerieve from the API.

getResolutionTimingLimits
The getResolutionTimingLimits method is accessible by the /control/getResolutionTimingLimits endpoint.This method tests the

camera ability to support a desired resolution and framerate.

This method checks the sensor's ability to operate at the desired resolution parameters and, if successful, reports on some of the

parameters that would apply if that resolution was configured. Otherwise, this method will generate an error to indicate that the

resolution setting is not supported by the image sensor.

The getResolutionTimingLimits method accepts the following arguments:

Chronos API Documentation 3 of 32

Argument Type Description

bitDepth int, optional Desired pixel bit depth to use for image readout. (default: image sensor maximum)

hOffset int, optional Horizontal offset of the image from the right edge of the image sensor. (default: center the image

horizontally)

hRes int Horizontal image resolution, in pixels.

minFrameTime float,

optional

Minimum time period, in seconds between frames, that the imager sensor will operate at. (default: image

sensor minimum)

vOffset int, optional Vertical offset of the image from the top edge of the image sensor. (default: center the image vertically)

vRes int Vertical image resolution, in pixels.

The getResolutionTimingLimits method returns a dictionary with the following members:

Return Value Type Description

cameraMaxFrames int The maximum number of frames that the camera can save at this resolution and framerate setting.

exposureMax int The maximmum exposure period in nanoseconds, that the image sensor can expose a frame for if

framePeriod was set equal to minFramePeriod.

exposureMin int The minimum exposure period in nanoseconds that the image sensor can exposure a frame for.

minFramePeriod int The minimum frame period, in nanoseconds between frames, that the image sensor can operate at.

importCalData
The importCalData method is accessible by the /control/importCalData endpoint.This method imports calibration data that was

generated off-camera.

This method looks for any calibration data present on a USB thumb drive, typically mounted at /media/sda1, and copies the calibration

data to the camera's internal filesystem for later use.

This method is used during factory calibration to import calibration data that the camera is not capable of generating on its own.

Typically the camera will be connected to a test jig to stimulate the camera, with data being acquired using the exportCalData method.

reboot
The reboot method is accessible by the /control/reboot endpoint.This method restarts the control API and/or the camera.

This method allows the user to restart their camera software, and optionally perform a full power cycle and/or return to factory default

settings at the same time.

The reboot method accepts the following arguments:

Argument Type Description

power boolean,

optional

When true, the camera will perform a full power cycle.

reload boolean,

optional

When true, the control API and user interfaces will restart themeselves (default: true).

Chronos API Documentation 4 of 32

Argument Type Description

settings boolean,

optional

When true, the user and API settings are removed during the reboot, returning the camera to its factory

default state.

set
The set method is accessible by the /control/set endpoint.This method sets parameter values in the API.

The resulting dictionary will contain an element for each paramer that was successfully set in the API. If any parameters could not be

set, they will be included in an error dictionary given the reason that they could not be set. Typically this is either because the value

given was not valid for the parameter, or the parameter did not exist.

The set method accepts the following arguments:

Argument Type Description

**values dict A dictionary naming each of the parameters to update, and the to which they should be set.

startCalibration
The startCalibration method is accessible by the /control/startCalibration endpoint.This method begin one or more calibration

procedures at the current settings.

Black calibration takes a sequence of images with the lens cap or shutter closed and averages them to find the black level of each pixel

on the image sensor. This value is then be subtracted during playback to correct for image offset defects.

Analog calibration consists of any automated image sensor calibration that can be performed quickly and autonomously without any

setup from the user (eg: no closing of the aperture or calibration jigs).

Factory calibration algorithms may require special test equipment or setups. Factory calibration also implies that calibration data will be

saved, and that conflicting user calibration data will be removed.

The startCalibration method accepts the following arguments:

Argument Type Description

analogCal bool,

optional

Perform autonomous analog calibration of the image sensor. (default: false)

blackCal bool,

optional

Perform a full black calibration assuming the user has closed the aperture or lens cap. (default:

false)

factory bool,

optional

Whether factory calibration algorithms should be performed. (default: false)

saveCal bool,

optional

Whether the results of calibration should be saved to the filesystem for later use. (default: false)

zeroTimeBlackCal bool,

optional

Perform a fast black calibration by reducing the exposure time and aperture to their minimum

values. (default: false)

This method starts an asynchronous process that changes the camera's state and executes in the background. The results of the

startCalibration method will be returned to the user in the complete event, with a method equal to startCalibration.

Chronos API Documentation 5 of 32

startFilesave
The startFilesave method is accessible by the /control/startFilesave endpoint.This method saves a region of recorded video to

external storage.

Upon calling this method, the video system will switch to the filesave state and begin encoding video data to the output device. During

this procedure, the playbackStart, playbackPosition and playbackLength parameters will be updated to track the progress of the

filesave.

When the filesave is completed, the video system will exit the filesave state, and revert back to whichever state it was in when the

startFilesave method was called.

The startFilesave method accepts the following arguments:

Argument Type Description

bitrate int, optional For compressed formats, this sets the desired bitrate of the encoded file in bits per second (0.25 bits per

pixel per second).

device string Name of the external storage device where video should be saved.

filename string,

optional

Name to give to the video file (or directory for TIFF and DNG formats). When omitted, a filename is

generated using the current date and time.

format string Enumerate the output video format.

framerate int, optional For formats with a media container (such as MPEG-4), this determines the framerate of the encoded media

file (default: 60 frames per second).

length int, optional The number of frames of video that should be saved (default: all frames).

start int, optional The frame number in recorded video where the saved video begin (default: 0).

startLivedisplay
The startLivedisplay method is accessible by the /control/startLivedisplay endpoint.This method switches the video system into

live display mode.

When in live display mode, the camera will replay the active video data being acquired from the image sensor onto the LCD screen,

HDMI port and its RTSP stream. The video stream will monitor for changes in the video geometry, or hotplug events and may restart

and reconfigure itself as necessary to keep the video data flowing. The show must go on.

Any video properties that relate to video playback rate and position have no meaning or effect when in this state.

startPlayback
The startPlayback method is accessible by the /control/startPlayback endpoint.This method switches the video system into

playback mode, or sets the playback position and rate.

When in playback mode, the camera will replay the captured video on the LCD, HDMI port and its RTSP stream. The user may

configure the starting frame number and the rate at which video is replayed.

Chronos API Documentation 6 of 32

The actual video stream replayed by the camera is fixed at either 30 or 60fps, the camera will either skip or duplicate frames to achieve

the requested framerate. For example, setting the framerate to 120fps will typically play every 2nd frame at 60fps.

The framerate can be either positive for forward playback, or negative to rewind backwards through video. A value of zero will

effectively pause the video on the current frame.

The startPlayback method accepts the following arguments:

Argument Type Description

framerate int The rate, in frames per second, at which video should advance through the playback memory.

loopcount int,

optional

The number of frames, after which the video system should return back to position and continue playback.

This allows the user to select a subset of the video to play.

position int The starting frame number from which video should play.

startRecording
The startRecording method is accessible by the /control/startRecording endpoint.This method program the recording sequencer

and start recording.

The startRecording method accepts the following arguments:

Argument Type Description

recMode RecModes, optional Override the current recMode property when starting the recording.

This method starts an asynchronous process that changes the camera's state and executes in the background. The results of the

startRecording method will be returned to the user in the complete event, with a method equal to startRecording.

startWhiteBalance
The startWhiteBalance method is accessible by the /control/startWhiteBalance endpoint.This method begin the white balance

procedure.

Take a white reference sample from the live video stream, and compute the white balance coefficients for the current lighting conditions.

If successful, the results of the white balance calculation will be stored in wbCustomColor and wbTemperature will be set to 0K.

The startWhiteBalance method accepts the following arguments:

Argument Type Description

hStart int, optional Horizontal position at which the white reference should be taken.

vStart int, optional Veritcal position at which the white reference should be taken.

This method starts an asynchronous process that changes the camera's state and executes in the background. The results of the

startWhiteBalance method will be returned to the user in the complete event, with a method equal to startWhiteBalance.

stopFilesave

Chronos API Documentation 7 of 32

The stopFilesave method is accessible by the /control/stopFilesave endpoint.This method terminates an ongoing filesave

operation

When the video system has started a filesave operation, it can take a very long time to complete denepding on the quanitity of footage

being saved, and the speed of media to which it is being written. If operation was started in error, or the user changes their mind, then

this method may be used to terminate that operation rather than waiting for it to complete.

It is acceptable to call this method even when no filesave operation is in progress, however, it may result in an otherwise unexpected

restart of the video system.

stopRecording
The stopRecording method is accessible by the /control/stopRecording endpoint.This method terminate a recording if one is in

progress.

Events
With server-sent-events it is possible for the camera to send asynchronous notifications when long running operations complete, or

parameters change in the API. This is done by pushing events to the web browser.

Using Javascript, a browser can subscribe to the HTML5 Server-Sent-Events stream by creating a new EventSource on the /control

/subscribe endpoint, and then using the addEventListener function to receive events.

function onNotifyEvent(data) {

 document.getElementById("result").innerText = JSON.parse(data);

}

var evtSource = new EventSource("/control/subscribe");

evtSource.addEventListener("notify", function(event) {onNotifyEvent(event.data);});

notify
The notify event is generated whenever a mutable parameter in the API changes its value, and the data sent with the event will

contain a dictionary of the updated parameter values.

user@example.com:~$ curl http://192.168.12.1/control/subscribe

event: notify

data:{

data: "calSuggested": false,

data: "state": "analogcal"

data:}

complete
The complete event is generated whenever an asynchronous procedure has run to completion, and will contain the results of the

procedure. If the procedure completed successfully then the data will contain a dictionary with the name of the method the completed,

Chronos API Documentation 8 of 32

and the new state of the camera. If the procedure completed with an error, then the dictionary will also contain an error with the type of

error that occured, and optionally a message with a human-readable description of the error.

 user@example.com:~$ curl http://192.168.12.1/control/subscribe

 event: complete

 data:{

 data: "state": "idle",

 data: "method": "startWhiteBalance",

 data: "error": "SignalClippingError",

 data: "message": "Signal clipping, reference image is too bright for white balance"

 data:}

Member Description

state The new state of the camera after completing the asynchronous call

method The name of the asynchronous API call that has completed

error A canonical name for an error that occured during the asynchronus call (optional)

message A human-readable string describing the cause of the error

Parameters
The Chronos API exposese a set of parameters that are accessible using a REST API. Parameters are accessed via standard HTTP

requests in JSON format, and where possible the Chronos API uses appropriate verbs for each action:

Verb Endpoint Action

GET /control/p/{name} Retrieve a single parameter by name if the r flags is set.

PUT /control/p/{name} Set the value of a single parameter by name if the w flag is set.

POST /control/p Update a collection parameters together

Parameters will have one or more flags describing the ways in which they can be manipulated using the REST API:

r flag: The parameter's value can be retrieved using the HTTP GET verb.

w flag: The parameter's value can be updated using the HTTP SET verb.

n flag: Changes to the parameter's value will be reported using the notify event.

Name Type Flags Description

backlightEnabled boolean rwn True if the LCD on the back of the camera is lit. Can be set to False to dim the screen and

save a small amount of power.

backlightEnabled => true

Chronos API Documentation 9 of 32

Name Type Flags Description

batteryChargeNormalizedfloat r-- Estimated battery charge, with 0.0 being depleted and 1.0 being fully charged.

batteryChargeNormalized => 1

batteryChargePercentfloat r-- Estimated battery charge, with 0% being depleted and 100% being fully charged.

batteryChargePercent => 100

batteryCritical boolean r-n True when the battery voltate is critically low and a powerdown is imminent

batteryCritical => false

batteryPresent boolean r-n True when the battery is installed, and False when the camera is only running on adaptor

power

batteryPresent => true

batteryVoltage float r-- The voltage that is currently being output by the battery. A fully charged battery outputs

between 12V and 12.5V.

batteryVoltage => 12.405

calSuggested boolean r-n True when the calibration of the camera needs updating.

calSuggested => false

cameraApiVersion string r-- Version string of the pychronos module

cameraApiVersion => "0.4.0-beta"

cameraDescription string rwn Descriptive string assigned by the user

cameraDescription => "Chronos SN:01436"

cameraFpgaVersion string r-- Version string of the FPGA bitstream that is currently running

cameraFpgaVersion => "3.24"

cameraIdNumber int rwn Unique camera number assigned by the user

cameraIdNumber => 0

Chronos API Documentation 10 of 32

Name Type Flags Description

cameraMaxFrames int r-n The maximum number of frames the camera's memory can save at the current resolution.

cameraMaxFrames => 17470

cameraMemoryGB float r-- Amount of video memory attached to the FPGA in GiB

cameraMemoryGB => 32

cameraModel string r-- Camera model name

cameraModel => "CR14-1.0"

cameraSerial string r-- Unique camera serial number

cameraSerial => "Nicholas!"

cameraTallyMode string rwn Mode in which the recording LEDs should operate.

off: All recording LEDs on the camera are turned off.

auto: The recording LEDs on the camera are on whenever the status property is

equal to 'recording'.

on: All recording LEDs on the camera are turned on.

cameraTallyMode => "auto"

colorMatrix array[float] rwn The matrix coefficients for a 3x3 color matrix converting the image sensor color space into

sRGB. The values are stored in row-scan order.

colorMatrix => ...

[

1.91431,

-0.576416,

-0.234131,

-0.30542,

1.38916,

-0.0966797,

0.126953,

-0.952881,

1.64917

]

Chronos API Documentation 11 of 32

Name Type Flags Description

config dictionary r-- Return a configuration dictionary of all saveable parameters

config => ...

{

"recSegments": 1,

"recMode": "normal",

"ioThresholdIo1": 2.49929,

"ioThresholdIo2": 2.49929,

"ioMappingCombOr2": {

"source": "none",

"debounce": false,

"invert": false

},

"ioMappingCombOr3": {

"source": "none",

"debounce": false,

"invert": false

},

"ioMappingStopRec": {

"source": "none",

"debounce": false,

"invert": false

},

"exposureMode": "normal",

"ioMappingToggleSet": {

"source": "none",

"debounce": false,

"invert": false

},

"ioMappingCombOr1": {

"source": "none",

"debounce": false,

"invert": false

},

"ioMappingCombXor": {

"source": "none",

"debounce": false,

"invert": false

},

"ioMappingGate": {

"source": "none",

"debounce": false,

"invert": false

},

"recTrigDelay": 0,

"currentGain": 2,

"recPreBurst": 1,

"ioMappingToggleFlip": {

"source": "none",

"debounce": false,

"invert" false

Chronos API Documentation 12 of 32

Name Type Flags Description

currentGain float rwn The current gain of the image sensor as a linear multiplier of sensorIso.

currentGain => 2

currentIso float rw- The ISO number of the image sensor at the current current gain.

currentIso => 640

dateTime string r-- The current date and time in ISO-8601 format.

dateTime => "2020-04-15T05:39:31.243589"

digitalGain float rwn Digital image gain applied during video processing.

digitalGain => 1

disableRingBuffer boolean rw- When true, the camera will stop recording once the RAM buffer is full instead of looping

over.

By default, the camera will enable the ring buffer, so once the maximum record length has

been reached, the camera will overwrite the oldest footage in the recording in normal

recording mode, or overwrite the oldest segment in sedgmented recording mode.

disableRingBuffer => false

exposureMax int r-n The maximum possible time, in nanoseconds, that the image sensor is capable of

exposing

a frame for at the current resolution and framePeriod.

exposureMax => 929900

exposureMin int r-n The minimum possible time, in nanoseconds, that the image sensor is capable of

exposing

a frame for at the current resolution and framePeriod.

exposureMin => 1000

Chronos API Documentation 13 of 32

Name Type Flags Description

exposureMode string rwn Mode in which frame timing and exposure should operate.

normal: Frame and exposure timing operate on fixed periods and are free-running.

shutterGating: Frame starts on the rising edge of the trigger signal, and exposes

the frame for as long as the trigger signal is held high, regardless of the

exposurePeriod property. Once readout completes, the camera will wait for another

rising edge before starting the next frame. When in this mode, the framePeriod

property constrains the minimum time between frames.

frameTrigger: Frame starts on the rising edge of the trigger signal, and exposes the

frame for exposurePeriod nanoseconds. Once readout completes, the camera will

wait for another rising edge before starting the next frame. In this mode, the

framePeriod property constrains the minimum time between frames.

exposureMode => "normal"

exposureNormalized float rw- The current exposure time rescaled between exposureMin and exposureMax. This value

is 0 when exposure is at minimum, and increases linearly until exposure is at maximum,

when it is 1.0.

exposureNormalized => 1

exposurePercent float rw- The current exposure time rescaled between exposureMin and exposureMax. This value

is 0% when exposure is at minimum, and increases linearly until exposure is at maximum,

when it is 100%.

exposurePercent => 100

exposurePeriod int rwn Minimum period, in nanoseconds, that the image sensor is currently exposing frames for.

exposurePeriod => 929900

externalPower boolean r-n True when the AC adaptor is present, and False when on battery power.

externalPower => true

Chronos API Documentation 14 of 32

Name Type Flags Description

externalStorage dictionary r-- The currently attached external storage partitions and their status. The sizes

of the reported storage devices are in units of kB.

externalStorage => ...

{

"mmcblk1p1": {

"device": "/dev/mmcblk1p1",

"description": "MMC/SD Card Partiton 1",

"mount": "/media/mmcblk1p1",

"fstype": "vfat"

}

}

fanOverride float rwn Fan speed in the range of 0=off to 1.0=full, or -1 for automatic fan control.

fanOverride => -1

focusPeakingColor string rwn The color to display when focus peaking detects a sharp edge.

black:

red:

cyan:

blue:

yellow:

magenta:

white:

green:

focusPeakingColor => "magenta"

focusPeakingLevel float rwn Edge sensitivity at which focus peaking is detected, with 0.0 disabling focus peaking and

1.0 for maximum sensitivity.

focusPeakingLevel => 0

framePeriod int rwn The time, in nanoseconds, to record a single frame.

framePeriod => 935455

frameRate float rw- The estimated estimated recording rate in frames per second (reciprocal of framePeriod).

frameRate => 1069

Chronos API Documentation 15 of 32

Name Type Flags Description

ioDelayTime float rw- Delay time, in seconds, for the programmable delay block

ioDelayTime => 0

Chronos API Documentation 16 of 32

Name Type Flags Description

ioDetailedStatus dictionary r-- Detailed status of the IO block.

Values Type Description

detailedComb dict Dictionary of booleans showing the internal state of the

combinatorial logic block.

edgeTimers dict Dictionary containing the time in clock cycles since the last rising

and falling edges were measured for each output signal.

output dict Dictionary of booleans showing the state of all the output signals

from the IO block.

sources dict The contents of the ioSouceStatus parameter.

ioDetailedStatus => ...

{

"detailedComb": {

"or1": false,

"or2": false,

"or3": false,

"and": true,

"xor": false

},

"edgeTimers": {

"stop": {

"rising": 42.9497,

"falling": 42.9497

},

"interrupt": {

"rising": 42.9497,

"falling": 42.9497

},

"shutter": {

"rising": 42.9497,

"falling": 42.9497

},

"io1": {

"rising": 42.9497,

"falling": 42.9497

},

"io2": {

"rising": 42.9497,

"falling": 42.9497

},

"start": {

"rising": 42.9497,

"falling": 42.9497

},

"toggle": {

"rising": 42.9497,

"falling": 42.9497

}

Chronos API Documentation 17 of 32

Name Type Flags Description

ioMapping dictionary rw- Legacy interface to the IO block.

This parameter contains a complex dictionary that both configures and describes the

entire IO block in a single set operation. It is difficult to describe all of the nuances in

which this parameter operates, so we recommend using the other IO block parameters to

achieve your goal instead.

ioMapping => ...

{

"combAnd": {

"source": "alwaysHigh",

"debounce": false,

"invert": false

},

"delay": {

"delayTime": 0,

"source": "comb",

"debounce": false,

"invert": false

},

"toggleSet": {

"source": "none",

"debounce": false,

"invert": false

},

"gate": {

"source": "none",

"debounce": false,

"invert": false

},

"toggleFlip": {

"source": "none",

"debounce": false,

"invert": false

},

"start": {

"source": "none",

"debounce": false,

"invert": false

},

"shutter": {

"shutterTriggersFrame": false,

"source": "none",

"debounce": false,

"invert": false

},

"combXOr": {

"source": "none",

"debounce": false,

"invert": false

}

Chronos API Documentation 18 of 32

Name Type Flags Description

ioMappingCombAnd dictionary rwn Combinatorial block AND input configuration

ioMappingCombAnd => ...

{

"source": "alwaysHigh",

"debounce": false,

"invert": false

}

ioMappingCombOr1 dictionary rwn Combinatorial block OR input 1 configuration

ioMappingCombOr1 => ...

{

"source": "none",

"debounce": false,

"invert": false

}

ioMappingCombOr2 dictionary rwn Combinatorial block OR input 2 configuration

ioMappingCombOr2 => ...

{

"source": "none",

"debounce": false,

"invert": false

}

Chronos API Documentation 19 of 32

Name Type Flags Description

ioMappingCombOr3 dictionary rwn Combinatorial block OR input 3 configuration

ioMappingCombOr3 => ...

{

"source": "none",

"debounce": false,

"invert": false

}

ioMappingCombXor dictionary rwn Combinatorial block XOR input configuration

ioMappingCombXor => ...

{

"source": "none",

"debounce": false,

"invert": false

}

ioMappingDelay dictionary rwn Programmable delay block input configuration

ioMappingDelay => ...

{

"source": "comb",

"debounce": false,

"invert": false

}

Chronos API Documentation 20 of 32

Name Type Flags Description

ioMappingGate dictionary rwn Gate input signal configuration

ioMappingGate => ...

{

"source": "none",

"debounce": false,

"invert": false

}

ioMappingIo1 dictionary rwn Ouput driver 1 configuration

ioMappingIo1 => ...

{

"drive": 1,

"source": "alwaysHigh",

"debounce": false,

"invert": false

}

ioMappingIo2 dictionary rwn Output driver 2 configuration

ioMappingIo2 => ...

{

"drive": 0,

"source": "alwaysHigh",

"debounce": false,

"invert": false

}

Chronos API Documentation 21 of 32

Name Type Flags Description

ioMappingShutter dictionary rwn Timing block shutter control signal configuration

ioMappingShutter => ...

{

"source": "none",

"debounce": false,

"invert": false

}

ioMappingStartRec dictionary rwn Recording start signal configuration

ioMappingStartRec => ...

{

"source": "none",

"debounce": false,

"invert": false

}

ioMappingStopRec dictionary rwn Recording stop signal configuration

ioMappingStopRec => ...

{

"source": "none",

"debounce": false,

"invert": false

}

Chronos API Documentation 22 of 32

Name Type Flags Description

ioMappingToggleCleardictionary rwn Toggle/flip-flop block CLEAR input configuration

ioMappingToggleClear => ...

{

"source": "none",

"debounce": false,

"invert": false

}

ioMappingToggleFlip dictionary rwn Toggle/flip-flop block FLIP input configuration

ioMappingToggleFlip => ...

{

"source": "none",

"debounce": false,

"invert": false

}

ioMappingToggleSet dictionary rwn Toggle/flip-flop block SET input configuration

ioMappingToggleSet => ...

{

"source": "none",

"debounce": false,

"invert": false

}

Chronos API Documentation 23 of 32

Name Type Flags Description

ioMappingTrigger dictionary rwn Recording trigger signal configuration

ioMappingTrigger => ...

{

"source": "io1",

"debounce": true,

"invert": true

}

ioOutputStatus dictionary r-- The output signals from the IO block and their current values.

ioOutputStatus => ...

{

"gate": false,

"delay": false,

"start": false,

"comb": false,

"shutter": false,

"toggle": true,

"stop": false,

"io1": true,

"io2": true

}

Chronos API Documentation 24 of 32

Name Type Flags Description

ioSourceStatus dictionary r-- The available IO signals and their current values.

ioSourceStatus => ...

{

"io3": false,

"nextSeg": false,

"delay": false,

"io1": true,

"dispFrame": false,

"alwaysHigh": true,

"none": false,

"comb": false,

"shutter": true,

"toggle": true,

"endRec": false,

"timingIo": true,

"recording": false,

"software": false,

"startRec": false,

"io2": false

}

ioStatusSourceIo1 boolean r-- The current logic level seen on the IO input 1 (BNC jack).

ioStatusSourceIo1 => true

ioStatusSourceIo2 boolean r-- The current logic level seen on IO input 2 (green IO connector).

ioStatusSourceIo2 => false

ioStatusSourceIo3 boolean r-- The current logic levle seeon on IO input 3 (opto-isolated input).

ioStatusSourceIo3 => false

ioThresholdIo1 float rwn Voltage threshold at which trigger input signal 1 should go high.

ioThresholdIo1 => 2.49929

ioThresholdIo2 float rwn Voltage threshold at which trigger input signal 2 should go high.

ioThresholdIo2 => 2.49929

Chronos API Documentation 25 of 32

Name Type Flags Description

lastShutdownReason string r-- The reason for the last shutdown that happened.

lastShutdownReason => "97: PwrBtn, Software, PMIC Ack"

minFramePeriod int r-n The minimum frame period, in nanoseconds, at the current resolution settings.

minFramePeriod => 934922

miscScratchPad dictionary rwn A dictionary of arbitrary values that can be stored in the camera.

miscScratchPad => ...

{

"empty": 1

}

networkHostname string rw- Hostname to be used for dhcp requests and to be displayed on the command line.

networkHostname => "chronos"

overlayEnable boolean rwn Enabled the overlay text box when in playback mode

overlayEnable => false

overlayFormat string rwn Format string for the overlay text box

overlayFormat => "%.6h/%.6z Sg=%g/%i T=%.8Ss"

overlayPosition string rwn Location in the video stream to position the overlay textbox. This can take the values

"top", "bottom" or a position of the form HPOSxVPOS.

overlayPosition => "bottom"

playbackLength int rwn The number of frames which should be replayed when in playback mode.

playbackLength => 0

playbackPosition int rw- The current frame being display when the camera is in playback mode.

playbackPosition => 0

Chronos API Documentation 26 of 32

Name Type Flags Description

playbackRate int rwn The rate at which video is being replayed when in playback mode.

playbackRate => 0

playbackStart int rwn The starting frame from which video should be replayed when in playback mode.

playbackStart => 0

pmicFirmwareVersion string r-- The Power Management IC's firmware version.

pmicFirmwareVersion => "9"

powerOffWhenMainsLostboolean rwn True if the camera should power itself down when disconnected from mains power.

powerOffWhenMainsLost => false

powerOnWhenMainsConnectedboolean rwn True if the camera should power itself on when plugged into mains power.

powerOnWhenMainsConnected => false

recMaxFrames int rwn Limit on the maximum number of frames for the recording sequencer to use.

recMaxFrames => 17470

recMode string rwn Mode in which the recording sequencer stores frames into video memory.

normal: Frames are saved continuously into a ring buffer of up to recMaxFrames in

length until the recording is terminated by the recording end trigger.

burst: Each rising edge of the recording trigger starts a new segment in video

memory, with frames being saved for as long as the recording trigger is active.

segmented: Up to recMaxFrames of video memory is divided into recSegments

number of of ring buffers. The camera saves video into one ring buffer at a time,

switching to the next ring buffer at each recording trigger.

recMode => "normal"

recPreBurst int rwn The number of frames leading up to the trigger rising edge to save when in 'burst'

recording mode.

recPreBurst => 1

recSegments int rwn The number of segments used by the recording sequencer when in 'segmented' recording

mode.

recSegments => 1

Chronos API Documentation 27 of 32

Name Type Flags Description

recTrigDelay int rwn The number of frames to delay the trigger rising edge by in 'normal' and 'segmented'

recording modes.

recTrigDelay => 0

resolution dictionary rwn Resolution geometry at which the image sensor should capture frames.

The optional hOffset and vOffset parameters allow the user to select where on the

sensor to position the frame when operating at a cropped resolution. If not provided when

setting, the camera will attempt to centre the cropped image on the image sensor.

When setting resolution, the minFrameTime may be optionally provided to allow the image

sensor to better tune itself for the desired frame period. When omitted, it is assumed that

the sensor will tune itself for its maximum framerate.

Values Type Description

hOffset int,

optional

Horizontal offset, in pixels, from the top left of the full frame at

which the first pixel will be read out.

hRes int Horizontal resolution of the catpured image, in pixels.

minFrameTime float,

optional

The minimum frame time, in seconds, that the image sensor

is capable of recording frames when at this resolution

configuration.

vDark int,

optional

The number of vertical dark rows to read out.

vOffset int,

optional

Vertical offset, in pixels, from the top left of the full frame at

which the first pixel will be read out.

vRes int Vertical resolution of the captured image, in pixels.

resolution => ...

{

"vRes": 1024,

"minFrameTime": 0.000934922,

"vOffset": 0,

"hRes": 1280,

"hOffset": 0,

"vDarkRows": 0,

"bitDepth": 12

}

sensorBitDepth int r-- Number of bits per pixel sampled by the image sensor.

sensorBitDepth => 12

Chronos API Documentation 28 of 32

Name Type Flags Description

sensorColorPattern string r-- String describing the color filter array pattern of the image sensor.

For example, a typical 2x2 Bayer pattern sensor might have a value of 'GRBG', while a

monochrome image sensor would have a value of 'mono'.

sensorColorPattern => "GRBG"

sensorHIncrement int r-- Minimum step size allowed, in pixels, for changes in the horizontal resolution of the image

sensor.

sensorHIncrement => 16

sensorHMax int r-- Maximum horizontal resolution, in pixels, of the active area of the image sensor.

sensorHMax => 1280

sensorHMin int r-- Minimum horizontal resolution, in pixels, of the active area of the image sensor.

sensorHMin => 192

sensorIso int r-- ISO number of the image sensor with nominal (0dB) gain applied.

sensorIso => 320

sensorMaxGain int r-- Maximum gain of the image sensor as a linear muliplier of the sensorISO.

sensorMaxGain => 16

sensorName string r-- Descriptive name of the image sensor.

sensorName => "LUX1310"

sensorPixelRate float r-- Approximate throughput of the image sensor in pixels per second.

sensorPixelRate => 1401980000

sensorTemperature float r-- The temperature, in degrees Celcius, measured near the image sensor.

sensorTemperature => 38.9961

sensorVDark int r-- Maximum vertical resolution, in pixels, of the optical black regions of the sensor.

sensorVDark => 8

Chronos API Documentation 29 of 32

Name Type Flags Description

sensorVIncrement int r-- Minimum step size allowed, in pixels, for changes in the vertical resolution of the image

sensor.

sensorVIncrement => 2

sensorVMax int r-- Maximum vertical resolution, in pixels, of the active area of the image sensor.

sensorVMax => 1024

sensorVMin int r-- Minimum vertical resolution, in pixels, of the active area of the image sensor.

sensorVMin => 32

shippingMode boolean rwn True when the camera is configured for shipping mode

shippingMode => false

shutterAngle float rw- The angle in degrees for which frames are being exposed relative to the frame time.

shutterAngle => 357.862

state string r-n The current operating state of the camera.

Values Type Description

analogCal undefined The camera is currently performing analog calibration of the

image sensor.

blackCal undefined The camera is currently calibrating using a dark reference image.

idle undefined The camera is powered up and operating, but not doing

anything.

recording undefined The camera is running a recording program to save images into

video memory.

reset undefined The camera is in the process of resetting the FPGA and image

sensor.

state => "idle"

systemTemperature float r-- The temperature, in degrees Celcius, measured near the main processor.

systemTemperature => 47

totalFrames int r-- Total number of frames of recorded video that are have been saved into memory.

totalFrames => 872

Chronos API Documentation 30 of 32

Name Type Flags Description

totalSegments int r-- Total number of video segments that have been saved into memory.

totalSegments => 1

videoConfig dictionary r-- Dictionary of parameters saved persistently by the video system.

videoConfig => ...

{

"overlayFormat": "%.6h/%.6z Sg=%g/%i T=%.8Ss",

"overlayEnable": false,

"overlayPosition": "bottom",

"focusPeakingLevel": 0,

"zebraLevel": 0,

"focusPeakingColor": "magenta"

}

videoSegments dictionary r-- Array of video segments, describing the size and metadata of that has been recorded.

videoSegments => ...

[

{

"interval": 0.000935522,

"offset": 0,

"exposure": 0.000929933,

"length": 872

}

]

videoState string r-n Current state of the video system.

live:

filesave:

play:

paused:

videoState => "live"

videoZoom float rwn Video scaling ratio to apply to the video stream (1.0 = fit to screen)

videoZoom => 1

Chronos API Documentation 31 of 32

Name Type Flags Description

wbColor array[float] rwn The Red, Green and Blue gain coefficients to achieve white balance.

wbColor => ...

[

1.52979,

1,

1.34985

]

wbCustomColor array[float] rwn The Red, Green and Blue gain coefficients last computed by startWhiteBalance().

wbCustomColor => ...

[

1,

1,

1

]

wbTemperature int rwn Color temperature, in degrees Kelvin, to use for white balance.

wbTemperature => 8000

zebraLevel float rwn Pixel threshold at which zebra striping is enabled. Values close to 0.0 only trigger zebra

stripes near saturation, and values near 1.0 would enable zebra stripes even when the

image is black.

zebraLevel => 0

Chronos API Documentation 32 of 32

